The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The duration of nuclear extracellular signal-regulated kinase 1 and 2 signaling during cell cycle reentry distinguishes proliferation from apoptosis in response to asbestos.

Asbestos exposure causes activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in lung epithelial cells, the targets of asbestos-associated lung carcinomas. The functional significance of ERK1/2 activation in pulmonary epithelial and mesothelial cells is unclear. Using serum-stimulated mouse alveolar type II epithelial cells as a model for cell cycle reentry, we show that the duration of phospho-ERK1/2 in the nucleus determines cell fate in response to crocidolite asbestos. In response to 10% serum, a proliferative stimulus, phosphorylated ERK1/2 initially accumulated in the nucleus, and reduction of nuclear phospho-ERK1/2 after 2 to 4 hours was followed by expression of cyclin D1 and S-phase entry. Low levels of asbestos (<0.5 microg/cm2) promoted S-phase entry in low (2%) serum through an epidermal growth factor receptor-dependent pathway but did not promote cell cycle progression or induce apoptosis in the presence of high (10%) serum-containing medium. Higher levels of asbestos (1.0 to 5.0 microg/cm2) prolonged the localization of phospho-ERK1/2 in the nucleus in the presence of high serum, impeded S-phase entry, and induced apoptosis in a dose-dependent manner. Immunofluorescence microscopy indicated that the duration of signaling by phospho-ERK1/2 in the nucleus was predictive of cell fate at any concentration of asbestos. After 8 hours of exposure, cells with nuclear phospho-ERK1/2 also were positive for nuclear localization of apoptosis-inducing factor ( AIF), an early event in apoptosis. In contrast, asbestos-exposed cells that displayed cytoplasmic phospho-ERK1/2 at 8 hours expressed cyclin D1 and proceeded to S phase. Our studies show that prolonged localization of phospho-ERK1/2 in the nucleus is incompatible with expression of cyclin D1 and is predictive of asbestos- associated cell death by AIF, thereby providing an approach for determining cell fate in asbestos-induced tumorigenesis.[1]

References

 
WikiGenes - Universities