The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

A phytol-enriched diet induces changes in fatty acid metabolism in mice both via PPARalpha-dependent and -independent pathways.

Branched-chain fatty acids (such as phytanic and pristanic acid) are ligands for the nuclear hormone receptor peroxisome proliferator-activated receptor alpha (PPARalpha) in vitro. To investigate the effects of these physiological compounds in vivo, wild-type and PPARalpha-deficient (PPARalpha-/-) mice were fed a phytol-enriched diet. This resulted in increased plasma and liver levels of the phytol metabolites phytanic and pristanic acid. In wild-type mice, plasma fatty acid levels decreased after phytol feeding, whereas in PPARalpha-/- mice, the already elevated fatty acid levels increased. In addition, PPARalpha-/- mice were found to be carnitine deficient in both plasma and liver. Dietary phytol increased liver free carnitine in wild-type animals but not in PPARalpha-/- mice. Investigation of carnitine biosynthesis revealed that PPARalpha is likely involved in the regulation of carnitine homeostasis. Furthermore, phytol feeding resulted in a PPARalpha-dependent induction of various peroxisomal and mitochondrial beta-oxidation enzymes. In addition, a PPARalpha-independent induction of catalase, phytanoyl-CoA hydroxylase, carnitine octanoyltransferase, peroxisomal 3-ketoacyl-CoA thiolase, and straight-chain acyl-CoA oxidase was observed. In conclusion, branched-chain fatty acids are physiologically relevant ligands of PPARalpha in mice. These findings are especially relevant for disorders in which branched-chain fatty acids accumulate, such as Refsum disease and peroxisome biogenesis disorders.[1]


  1. A phytol-enriched diet induces changes in fatty acid metabolism in mice both via PPARalpha-dependent and -independent pathways. Gloerich, J., van Vlies, N., Jansen, G.A., Denis, S., Ruiter, J.P., van Werkhoven, M.A., Duran, M., Vaz, F.M., Wanders, R.J., Ferdinandusse, S. J. Lipid Res. (2005) [Pubmed]
WikiGenes - Universities