Dynamic interactions of Fc gamma receptor IIB with filamin- bound SHIP1 amplify filamentous actin-dependent negative regulation of Fc epsilon receptor I signaling.
The engagement of high affinity receptors for IgE (FcepsilonRI) generates both positive and negative signals whose integration determines the intensity of mast cell responses. FcepsilonRI-positive signals are also negatively regulated by low affinity receptors for IgG (FcgammaRIIB). Although the constitutive negative regulation of FcepsilonRI signaling was shown to depend on the submembranous F-actin skeleton, the role of this compartment in FcgammaRIIB-dependent inhibition is unknown. We show in this study that the F-actin skeleton is essential for FcgammaRIIB-dependent negative regulation. It contains SHIP1, the phosphatase responsible for inhibition, which is constitutively associated with the actin-binding protein, filamin-1. After coaggregation, FcgammaRIIB and FcepsilonRI rapidly interact with the F-actin skeleton and engage SHIP1 and filamin-1. Later, filamin-1 and F-actin dissociate from FcR complexes, whereas SHIP1 remains associated with FcgammaRIIB. Based on these results, we propose a dynamic model in which the submembranous F-actin skeleton forms an inhibitory compartment where filamin-1 functions as a donor of SHIP1 for FcgammaRIIB, which concentrate this phosphatase in the vicinity of FcepsilonRI and thereby extinguish activation signals.[1]References
- Dynamic interactions of Fc gamma receptor IIB with filamin-bound SHIP1 amplify filamentous actin-dependent negative regulation of Fc epsilon receptor I signaling. Lesourne, R., Fridman, W.H., Daëron, M. J. Immunol. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg