The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Different G2/M accumulation in M059J and M059K cells after exposure to DNA double-strand break-inducing agents.

PURPOSE: To investigate and compare the cell cycle progression in relation to cell death in the human glioma cell lines, M059J and M059K, after exposure to DNA double-strand break-inducing agents. METHODS AND MATERIALS: The M059J and M059K cells, deficient and proficient in the catalytic subunit of the DNA-dependent protein kinase, respectively, were exposed to 1 and 4 Gy of photons or accelerated nitrogen ions. In addition, M059J and M059K cells were treated with 10 and 40 mug/mL of bleomycin for 30 min, respectively. Cell cycle progression, monitored by DNA flow cytometry, was measured up to 72 h after treatment. RESULTS: M059J, but not M059K, cells displayed G(2)/M accumulation after low linear energy transfer irradiation. High linear energy transfer radiation exposure however, resulted in a substantial increase of M059K cells in the G(2)/M phase detected at 48 h. At 72 h, the number of cells in the G(2)/M phase was equivalent to its control. M059J cells accumulated mainly in S phase after high linear energy transfer irradiation. In contrast to M059K, M059J cells were still blocked at 72 h. Bleomycin induced G(2)/M accumulation for both M059J and M059K cells detected 24 h after treatment. At 48 h, the percentage of bleomycin-treated M059J cells in G(2)/M phase remained high, and the number of M059K cells had decreased to control levels. Neither cell line showed cell cycle arrest (< or =10 h) after exposure to these agents. CONCLUSION: Distinct cell cycle block and release is dependent on the complexity of the induced DNA damage and the presence of the DNA-dependent protein kinase catalytic subunit.[1]

References

  1. Different G2/M accumulation in M059J and M059K cells after exposure to DNA double-strand break-inducing agents. Holgersson, A., Heiden, T., Castro, J., Edgren, M.R., Lewensohn, R., Meijer, A.E. Int. J. Radiat. Oncol. Biol. Phys. (2005) [Pubmed]
 
WikiGenes - Universities