The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Characterization of Saccharomyces cerevisiae natural populations for pseudohyphal growth and colony morphology.

In this work we have analyzed the colony and cellular morphologies of natural populations of Saccharomyces cerevisiae strains in response to different environmental stimuli. Among one thousand strains grown on YPD medium, 2.5% exhibited a rough (R) colony phenotype versus a smooth (S) phenotype. When grown on the ammonium-deficient medium SLAD, 56% of the strains showed a filamentous phenotype, often associated (43.8%) with an invasive phenotype, while 4.7% of the strains exhibited only an invasive phenotype. The rough phenotype on YPD was always associated with the filamentous phenotype on SLAD. A subset of 52 strains was further characterized for the growth phenotype under different stimuli (nitrogen deprivation, addition of alcohols, growth on proline as sole nitrogen source). On 27 strains, genetic analysis of the spore products was also performed. The entire set of data showed a wide distribution of dimorphism in the yeast population and great variability with respect to the dimorphic switch capability. Some strains grew with peculiar colony morphologies under different environmental stimuli and some showed colony morphology variations. Ecological implications of the wide spreading of dimorphic behavior and the occurrence of peculiar colony morphologies in natural yeasts are discussed.[1]

References

  1. Characterization of Saccharomyces cerevisiae natural populations for pseudohyphal growth and colony morphology. Casalone, E., Barberio, C., Cappellini, L., Polsinelli, M. Res. Microbiol. (2005) [Pubmed]
 
WikiGenes - Universities