The bone behind a low areal bone mineral density: peripheral quantitative computed tomographic analysis in a woman with osteogenesis imperfecta

J Musculoskelet Neuronal Interact. 2002 Jun;2(4):306-8.

Abstract

Areal bone mineral density (BMD) is the most widely used densitometric parameter. However, this approach makes it difficult to understand the structural basis of bone diseases, because a large number of bone properties are integrated into a single number. This is exemplified in the present case of a 27-year-old woman with osteogenesis imperfecta type I. Peripheral quantitative computed tomographic analysis at the radial metaphysis and at the radial diaphysis revealed a decreased areal BMD at both sites (z score -3.9 and -3.4, respectively). Yet, the structural basis for this decrease was different for the two locations: At the distal radius areal BMD was decreased because volumetric BMD was very low, whereas bone size was above the mean of the reference range. At the proximal radius areal BMD was decreased, because bone size was very low but volumetric BMD was above average. Bone mineral content of the radial diaphysis was very low for forearm muscle size, a finding which is compatible with Frost's hypothesis that the mechanostat setpoint is increased in osteogenesis imperfecta.