The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Inhibition of CYP2E1 catalytic activity in vitro by S-adenosyl-L-methionine.

The objective of this work was to evaluate the possible in vitro interactions of S-adenosyl-l-methionine (SAM) and its metabolites S-(5'-Adenosyl)-l-homocysteine (SAH), 5'-Deoxy-5'-(methylthio)adenosine (MTA) and methionine with cytochrome P450 enzymes, in particular CYP2E1. SAM (but not SAH, MTA or methionine) produced a type II binding spectrum with liver microsomal cytochrome P450 from rats treated with acetone or isoniazid to induce CYP2E1. Binding was less effective for control microsomes. SAM did not alter the carbon monoxide binding spectrum of P450, nor denature P450 to P420, nor inhibit the activity of NADPH-P450 reductase. However, SAM inhibited the catalytic activity of CYP2E1 with typical substrates such as p-nitrophenol, ethanol, and dimethylnitrosamine, with an IC(50) around 1.5-5mM. SAM was a non-competitive inhibitor of CYP2E1 catalytic activity and its inhibitory actions could not be mimicked by methionine, SAH or MTA. However, SAM did not inhibit the oxidation of ethanol to alpha-hydroxyethyl radical, an assay for hydroxyl radical generation. In microsomes engineered to express individual human P450s, SAM produced a type II binding spectrum with CYP2E1-, but not with CYP3A4-expressing microsomes, and SAM was a weaker inhibitor against the metabolism of a specific CYP3A4 substrate than a specific CYP2E1 substrate. SAM also inhibited CYP2E1 catalytic activity in intact HepG2 cells engineered to express CYP2E1. These results suggest that SAM interacts with cytochrome P450s, especially CYP2E1, and inhibits the catalytic activity of CYP2E1 in a reversible and non competitive manner. However, SAM is a weak inhibitor of CYP2E1. Since the K(i) for SAM inhibition of CYP2E1 activity is relatively high, inhibition of CYP2E1 activity is not likely to play a major role in the ability of SAM to protect against the hepatotoxicity produced by toxins requiring metabolic activation by CYP2E1 such as acetaminophen, ethanol, carbon tetrachloride, thioacetamide and carcinogens.[1]

References

  1. Inhibition of CYP2E1 catalytic activity in vitro by S-adenosyl-L-methionine. Caro, A.A., Cederbaum, A.I. Biochem. Pharmacol. (2005) [Pubmed]
 
WikiGenes - Universities