The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Stereoselectivity and interaction between the glucuronidation of S-(-)- and R-(+)-propranolol in rat hepatic microsomes pretreated with different inducers.

Phase II glucuronidation metabolism of side-chain propranolol was studied using microsomes from rats treated with the inducers beta-naphthoflavone (BNF) or dexamethasone (Dex). The glucuronide concentrations of propranolol enantiomers were assayed by RP-HPLC. The kinetic constants of glucuronidation, Km, Vmax and Clint were determined. There are significant differences between the R- and S-enantiomeric glucuronide in Km, Vmax and Clint P < 0.05, P < 0.01 and P < 0.05 in control microsome. There are significant differences in Km and Clint (P < 0.01 or P < 0.001) but no significant differences in Vmax (P > 0.05) between R and S-enantiomeric glucuronide in the microsomes induced with Dex and BNF. The formation of S-(-)-propranolol glucuronide was inhibited by R-(+)-propranolol from the rat microsomes pretreated with BNF and Dex. The glucuronidation metabolism of propranolol enantiomers exhibited the stereoselectivity in rat hepatic microsomes induced with BNF or Dex. Multiple UGT1A and 2B may be involved in stereoselective O-glucuronidation of propranolol enantiomers in rat liver microsomes. The glucuronides produced were in favor of the R-enantiomer. There is an interaction between the glucuronidation of R- and S-enantiomer.[1]

References

 
WikiGenes - Universities