The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Protective effects of a selective neutrophil elastase inhibitor (sivelestat) on lipopolysaccharide-induced acute dysfunction of the pulmonary microcirculation.

OBJECTIVE: The purpose of this study was to evaluate the effect of a neutrophil elastase inhibitor, sivelestat, on lipopolysaccharide-induced acute lung injury through analysis of hemodynamic changes in the pulmonary microcirculation. DESIGN: Randomized animal study. SETTING: Medical school laboratory. SUBJECTS: Twenty-seven Wistar rats (15 rats for microspectroscopic observations, 12 rats for measurements of neutrophil elastase activity and wet-to-dry ratio). INTERVENTIONS: Thoracosternotomy was performed on male Wistar rats under continuous anesthesia and mechanical ventilation. Rats were divided into three groups (n = 5 each groups) on the basis of the reagent used: lipopolysaccharide group (100 microg/kg lipopolysaccharide intravenously), sivelestat group (10 mg/kg sivelestat; 100 microg/kg lipopolysaccharide intravenously), and control group (saline only, intravenously). MEASUREMENTS AND MAIN RESULTS: We measured morphologic changes and hemodynamic variables, including tissue blood flow, erythrocyte velocity, erythrocyte count, thickness of interalveolar septa, and leukocyte adhesion in the pulmonary microcirculation, with a video-rate (33 msec/frame) dual-spot microspectroscopy system (DSMSS) and a laser-Doppler flowmeter. Blood-free wet-to-dry ratio and neutrophil elastase activity in bronchoalveolar lavage fluid, serum, and supernatant of lung homogenate were measured in another set of experiments (n = 4 for each group). Sixty minutes after lipopolysaccharide administration, severe thickening of the interalveolar septa was observed in the lipopolysaccharide but not the sivelestat group. In the lipopolysaccharide group, DSMSS measurements of erythrocyte velocity and hemoglobin oxygenation in single capillaries were decreased significantly (vs. control p < .05, vs. sivelestat p < .01), whereas tissue blood flow and erythrocyte velocity measurements from laser-Doppler flowmeter were increased significantly (vs. control p < .05, vs. sivelestat p < .01). The number of adherent leukocytes was increased significantly in the lipopolysaccharide group at 30, 45, and 60 mins after lipopolysaccharide administration (vs. control p < .01, vs. sivelestat p < .05). The number of adherent leukocytes did not increase in the sivelestat group. The wet-to-dry ratio was significantly higher in the lipopolysaccharide group than in control (p < .05) and sivelestat (p < .05) groups. Neutrophil elastase activities in the bronchoalveolar lavage fluid, serum, and lung tissue were all significantly lower in the sivelestat group than in the lipopolysaccharide group (p < .05). CONCLUSIONS: Lipopolysaccharide induces leukocyte adhesion in the pulmonary microcirculation, resulting in decreased tissue hemoglobin oxygen and alveolar and interstitial edema. The selective neutrophil elastase inhibitor sivelestat reduces neutrophil elastase activity and attenuates acute changes in the pulmonary microcirculation.[1]

References

  1. Protective effects of a selective neutrophil elastase inhibitor (sivelestat) on lipopolysaccharide-induced acute dysfunction of the pulmonary microcirculation. Inoue, Y., Seiyama, A., Tanaka, H., Ukai, I., Akimau, P., Nishino, M., Shimazu, T., Sugimoto, H. Crit. Care Med. (2005) [Pubmed]
 
WikiGenes - Universities