The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Apoptosis induced by the kinase inhibitor BAY 43-9006 in human leukemia cells involves down-regulation of Mcl-1 through inhibition of translation.

BAY 43-9006 is a kinase inhibitor that induces apoptosis in a variety of tumor cells. Here we report that treatment with BAY 43-9006 results in marked cytochrome c and AIF release into the cytosol, caspase-9, -8, -7, and -3 activation, and apoptosis in human leukemia cells (U937, Jurkat, and K562). Pronounced apoptosis was also observed in blasts from patients with acute myeloid leukemia. These events were accompanied by ERK1/2 inactivation and caspase-independent down-regulation of Mcl-1. Inducible expression of a constitutively active MEK1 construct did not prevent Mcl-1 down-regulation, suggesting that this event is not related to MEK/ ERK pathway inactivation. Furthermore, BAY 43-9006 did not induce major changes in Mcl-1 mRNA levels monitored by real-time PCR or Mcl-1 promoter activity demonstrated by luciferase reporter assays, but it did enhance Mcl-1 down-regulation in actinomycin D-treated cells. Inhibition of protein synthesis by cycloheximide or proteasome function with MG132 and pulse-chase studies with [35S]methionine demonstrated that BAY 43-9006 did not diminish Mcl-1 protein stability, nor did it enhance Mcl-1 ubiquitination, but instead markedly attenuated Mcl-1 translation in association with the rapid and potent dephosphorylation of the eIF4E translation initiation factor. Finally, ectopic expression of Mcl-1 in leukemic cells markedly inhibited BAY 43-9006-mediated cytochrome c cytosolic release, caspase-9, -7, and -3 activation, as well as cell death, indicating that Mcl-1 operates upstream of cytochrome c release and caspase activation. Together, these findings demonstrate that BAY 43-9006 mediates cell death in human leukemia cells, at least in part, through down-regulation of Mcl-1 via inhibition of translation.[1]

References

 
WikiGenes - Universities