Glycerophosphocholine-dependent growth requires Gde1p (YPL110c) and Git1p in Saccharomyces cerevisiae.
Glycerophosphocholine is formed via the deacylation of the phospholipid phosphatidylcholine. The protein encoded by Saccharomyces cerevisiae open reading frame YPL110c effects glycerophosphocholine metabolism in vivo, most likely by acting as a glycerophosphocholine phosphodiesterase. Deletion of YPL110c causes an accumulation of glycerophosphocholine in cells prelabeled with [14C]choline. Correspondingly, overexpression of YPL110c results in reduced intracellular glycerophosphocholine in cells prelabeled with [14C]choline. Glycerophospho[3H]choline supplied in the growth medium accumulates to a much greater extent in the intracellular fraction of a YPL110Delta strain than in a wild type strain. Furthermore, glycerophospho[3H]choline accumulation requires the transporter encoded by GIT1, a known glycerophosphoinositol transporter. Growth on glycerophosphocholine as the sole phosphate source requires YPL110c and the Git1p permease. In contrast to glycerophosphocholine, glycerophosphoinositol metabolism is unaffected by deletion of YPL110c. The open reading frame YPL110c has been termed GDE1.[1]References
- Glycerophosphocholine-dependent growth requires Gde1p (YPL110c) and Git1p in Saccharomyces cerevisiae. Fisher, E., Almaguer, C., Holic, R., Griac, P., Patton-Vogt, J. J. Biol. Chem. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg