The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation.

CNS neurons are endowed with the ability to recover from cytotoxic insults associated with the accumulation of proteinaceous aggregates in mouse models of polyglutamine disease, but the cellular mechanism underlying this phenomenon is unknown. Here, we show that autophagy is essential for the elimination of aggregated forms of mutant huntingtin and ataxin-1 from the cytoplasmic but not nuclear compartments. Human orthologs of yeast autophagy genes, molecular determinants of autophagic vacuole formation, are recruited to cytoplasmic but not nuclear inclusion bodies in vitro and in vivo. These data indicate that autophagy is a critical component of the cellular clearance of toxic protein aggregates and may help to explain why protein aggregates are more toxic when directed to the nucleus.[1]

References

  1. Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation. Iwata, A., Christianson, J.C., Bucci, M., Ellerby, L.M., Nukina, N., Forno, L.S., Kopito, R.R. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
 
WikiGenes - Universities