The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Asymmetric phase-transfer catalyzed glycolate alkylation, investigation of the scope, and application to the synthesis of (-)-ragaglitazar.

[Reaction: see text]. Asymmetric glycolate alkylation using a protected acetophenone surrogate under solid-liquid phase-transfer conditions is a new approach to the synthesis of 2-hydroxy esters and acids. Diphenylmethyloxy-2,5-dimethoxyacetophenone 1 with a trifluorobenzyl cinchonidinium bromide catalyst 9 (10 mol %) and cesium hydroxide provided S-alkylation products 2 at -35 degrees C in high yield (80-99%) and with excellent enantioselectivities using a wide range of electrophiles (80-90% ee). Alkylated products were elaborated to useful alpha-hydroxy intermediates 3 using bis-TMS peroxide Baeyer-Villiger conditions and selective transesterification reactions. The ester products have been enantioenriched by simple recrystallization from ether to give a single isomer (99% ee). A tight ion-pair model is proposed for the observed S-stereoinduction that includes van der Waals contacts between the extended enolate and the isoquinoline of the catalyst. To demonstrate the utility of the new methodology, the anti-diabetes drug (-)-ragaglitazar 24 was synthesized in six steps from a key 2-alkoxy-3-p-phenoxypropionic acid 26 that was made using PTC glycolate alkylation.[1]

References

 
WikiGenes - Universities