The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

In situ-produced 7-chlorokynurenate has different effects on evoked responses in rats with limbic epilepsy in comparison to naive controls.

PURPOSE: Uncontrolled epilepsy remains a significant health concern and requires new approaches to therapy. N-methyl-d-aspartate (NMDA) receptor blockade has been considered, but the adverse cognitive and behavioral effects of conventional NMDA-receptor antagonists have prevented the development of clinically useful compounds. An alternative approach may be the blockade of the glycine coagonist ("glycine(B)") site of the NMDA receptor. METHODS: As a first step in the exploration of this approach, we examined the effect of 4-chloro-kynurenine (4-Cl-KYN), which is converted by astrocytes to the potent NMDA glycine-site antagonist 7-chloro-kynurenic acid (7-Cl-KYNA), on the in vivo epileptiform evoked potentials in the CA1 region of rats with chronic limbic epilepsy (CLE). 4-Cl-KYN (100 mg/kg) was administered intraperitoneally to naive and epileptic rats. Evoked potentials were induced in area CA1 of the hippocampus by electrical stimulation of the midline region of the thalamus. Simultaneous microdialysis was performed in the contralateral hippocampus to determine the extracellular levels of 7-Cl-KYNA over the course of the experiment. RESULTS: Administration of 4-Cl-KYN caused a significant reduction in the amplitude of the population spike and in the number of population spikes in epileptic animals (p < 0.01) but had no effect on the evoked response in naive rats. In contrast, 4-Cl-KYN significantly altered the paired response in naive animals (p < 0.01), but had no significant effect on this parameter in epileptic animals. The levels of 7-Cl-KYNA measured achieved known pharmacologically effective concentrations and paralleled the observed physiological effects. CONCLUSIONS: The use of glial cells for the neosynthesis and local delivery of neuroactive compounds may be a viable strategy for the treatment of limbic epilepsy. These results also underscore the unique pharmacology of neurons in epilepsy.[1]

References

 
WikiGenes - Universities