Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation.
In yeast, histone H2B monoubiquitination is a cotranscriptional event regulating histone H3 methylation at lysines 4 and 79. However, mammalian H2B monoubiquitination remains poorly understood. We report that in humans, the 600 kDa RNF20/40 complex is the E3 ligase and UbcH6 is the ubiquitin E2-conjugating enzyme for H2B-Lys120 monoubiquitination. RNF20 and RNF40 are both homologs of Bre1, the E3 ligase in the yeast case. UbcH6 physically interacts with RNF20/40 and with the hPAF complex. Formation of a trimeric complex with hPAF stimulates H2B monoubiquitination activity in vitro. Accordingly, UbcH6, RNF20/40, and the hPAF complex are recruited to transcriptionally active genes in vivo. RNF20 overexpression leads to elevated H2B monoubiquitination, subsequently higher levels of methylation at H3 lysines 4 and 79, and stimulation of HOX gene expression. In contrast, RNAi against the RNF20/40 complex or hPAF complex reduces H2B monoubiquitination, lowers methylation levels at H3 lysines 4 and 79, and represses HOX gene expression.[1]References
- Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation. Zhu, B., Zheng, Y., Pham, A.D., Mandal, S.S., Erdjument-Bromage, H., Tempst, P., Reinberg, D. Mol. Cell (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg









