The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Ca(2+) sensitisation of force production by noradrenaline in femoral conductance and resistance arteries from rats with postinfarction congestive heart failure.

In this study we tested the hypothesis that arterial myofilament Ca(2+) sensitivity and/or the Ca(2+) sensitising effect of noradrenaline (NA) is enhanced in post-infarction congestive heart failure (CHF), which could contribute to the high peripheral vascular resistance in this condition. Femoral skeletal muscle resistance and conductance arteries (mean lumen diameters of 159 and 519 microm) from rats with CHF and sham-operated control rats were used. Isometric tension development and intracellular free calcium concentration ([Ca(2+)](i)) were measured simultaneously in isolated vessel segments using wire myography and the FURA-2 fluorescence technique. In conductance and resistance arteries, the resting levels of [Ca(2+)](i) and tension in physiological saline solution (PSS) and active tension in response to single doses of 125 mM K(+) (KPSS) were unaffected by CHF. During cumulative application of extracellular Ca(2+) to arteries depolarised with 125 mM K(+) or activated with 30 microM NA, [Ca(2+)](i) and vessel wall tension were similar in CHF and control rats. However, the conductance arteries showed significantly higher calcium sensitivity than resistance arteries in these experiments. We conclude that an abnormality in the sensitivity of the contractile apparatus to Ca(2+), or in NA-induced Ca(2+) sensitisation in arterial vascular smooth muscle cells is unlikely to contribute to the ubiquitously elevated vascular resistance associated with CHF. However, our data demonstrate significant differences in vascular Ca(2+) handling, myofilament Ca(2+) sensitivity and tension development between resistance and conductance arteries, regardless of CHF.[1]

References

  1. Ca(2+) sensitisation of force production by noradrenaline in femoral conductance and resistance arteries from rats with postinfarction congestive heart failure. Trautner, S., Amtorp, O., Boesgaard, S., Andersen, C.B., Galbo, H., Haunsoe, S., Sheykhzade, M. Vascul. Pharmacol. (2006) [Pubmed]
 
WikiGenes - Universities