The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Genome-wide prediction of mammalian enhancers based on analysis of transcription-factor binding affinity.

Understanding the regulation of human gene expression requires knowledge of the "second genetic code," which consists of the binding specificities of transcription factors (TFs) and the combinatorial code by which TF binding sites are assembled to form tissue-specific enhancer elements. Using a novel high-throughput method, we determined the DNA binding specificities of GLIs 1-3, Tcf4, and c-Ets1, which mediate transcriptional responses to the Hedgehog (Hh), Wnt, and Ras/ MAPK signaling pathways. To identify mammalian enhancer elements regulated by these pathways on a genomic scale, we developed a computational tool, enhancer element locator (EEL). We show that EEL can be used to identify Hh and Wnt target genes and to predict activated TFs based on changes in gene expression. Predictions validated in transgenic mouse embryos revealed the presence of multiple tissue-specific enhancers in mouse c-Myc and N-Myc genes, which has implications for organ-specific growth control and tumor-type specificity of oncogenes.[1]

References

  1. Genome-wide prediction of mammalian enhancers based on analysis of transcription-factor binding affinity. Hallikas, O., Palin, K., Sinjushina, N., Rautiainen, R., Partanen, J., Ukkonen, E., Taipale, J. Cell (2006) [Pubmed]
 
WikiGenes - Universities