The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Impact of reductive cleavage of an intramolecular disulfide bond containing cationic gemini surfactant in monolayers and bilayers.

The properties of a novel disulfide-bond-containing gemini surfactant bis[N,N-dimethyl-N-hexadecyl-N-(2-mercaptoethyl)ammonium bromide] disulfide (DSP) were studied using a Langmuir balance, supported monolayers, differential scanning calorimetry, giant vesicles, and LUVs. In 150 mM NaCl the cmc for DSP was 7.5 microM whereas that of the monomer N,N-dimethyl-N-hexadecyl-N-(2-mercaptoethyl)ammonium bromide ( MSP) was 12.1 microM. Both surfactants exhibited single endotherms upon DSC, with peak temperatures Tm at 21.7 and 20.1 degrees C for DSP and MSP, respectively. The endotherm for MSP was significantly broader indicating less cooperative melting. Both in monolayers and in vesicles reductive cleavage of the disulfide bond of DSP could be obtained by glutathione (GSH). For Langmuir films of DSP the addition of GSH into the subphase led to a decrease in surface pressure pi as well as surface dipole potential psi. Although the cleavage by GSH was significantly slower in the presence of a charge saturating concentration of DNA, it did not prevent the reaction. The resulting monomers detached from supported monolayers, leading to loss of affinity of the surface for DNA. Disruption of giant vesicles containing DSP within approximately 30 s following a local injection of GSH was observed, revealing membrane destabilization.[1]

References

  1. Impact of reductive cleavage of an intramolecular disulfide bond containing cationic gemini surfactant in monolayers and bilayers. Säily, V.M., Ryhänen, S.J., Lankinen, H., Luciani, P., Mancini, G., Parry, M.J., Kinnunen, P.K. Langmuir : the ACS journal of surfaces and colloids. (2006) [Pubmed]
 
WikiGenes - Universities