The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Studies on inhibition of transformation of 2,4,6-trinitrotoluene catalyzed by Fe-only hydrogenase from Clostridium acetobutylicum.

The major enzyme in Clostridium acetobutylicum ATCC 824 leading to transformation of TNT has been reported to be the Fe-only hydrogenase. In this study, we examine the effect of inhibitors of hydrogenase on TNT reduction by Clostridial extracts. These experiments further demonstrate the major role of hydrogenase in TNT transformation. The C. acetobutylicum hydrogenase is closely related to that of C. pasteurianum; and can be fitted to the X-ray crystal structure with a root mean square deviation of 1.18 A for the Calpha atoms of the generated 3D simulation model. The Hyd1, Hyd2, and Hyd3 antibodies generated against hydrogenase reacted with both the hydrogenase in cell extracts and with C. acetobutylicum hydrogenase expressed in Escherichia coli. Inhibition studies using antibodies against Fe-only hydrogenase from C. acetobutylicum indicated that the transformation of TNT by crude cell extracts was completely inhibited by Hyd2 antibody (to amino acid 415-428) whereas antibodies Hyd1 (to residues 1-16) and Hyd3 (to amino acid 424-448) inhibited less effectively. The TNT transforming activity of the cell extract was retained when Hyd2 antibody pretreated with purified but enzymatically inactive recombinant hydrogenase was added to the extract. Addition of the transition metal Cu (2+) to extracts completely inhibited the transformation of TNT suggesting the destruction of [4Fe-4S] centers which are essential for transfer of electrons from the H2-activating site to TNT. Growth of C. acetobutylicum was also inhibited by 0.5 mM Cu(2+) and Hg(2+) ions. The triazine dye, procion red and the nitroimidazole drug, metronidazole inhibit TNT reduction. The inhibition studies using antibodies, procion red, metronidazole, and transition metals suggest that different portions of hydrogenase are required for effective TNT reduction.[1]

References

 
WikiGenes - Universities