Hamartin and tuberin modulate gene transcription via beta-catenin.
Tuberous sclerosis, neurological genetic disorder characterized by the formation of benign tumors or hamartomas in multiple organ systems, is recently getting much attention. Numerous papers describe still-not-fully-explained pathogenesis of the disease. Studies on tuberous sclerosis allowed identification of two tumor suppressor genes, TSC1 and TSC2, encoding proteins implicated in the disease: hamartin and tuberin, respectively. The importance of these proteins is confirmed by their ubiquitous character and by the fact that TSC1/TSC2 complex is involved in the regulation of the activity of mTOR, a master controller of protein translation. Thus, the meaning of hamartin and tuberin goes far beyond tuberous sclerosis. As far as the influence of the TSC1/TSC2 complex on protein translation is well described in numerous reviews, little attention is drawn to the recently discovered role of the TSC1/TSC2 complex in gene transcription via the WNT signaling pathway. The present paper focuses on recent developments documenting the role of hamartin and tuberin in the WNT pathway.[1]References
- Hamartin and tuberin modulate gene transcription via beta-catenin. Jozwiak, J., Wlodarski, P. J. Neurooncol. (2006) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg









