The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

PRKAR1A Mutations and protein kinase A interactions with other signaling pathways in the adrenal cortex.

CONTEXT: Primary pigmented nodular adrenocortical disease, associated with Carney complex, is caused by mutations in PRKAR1A (mt-PRKAR1A), a gene that codes for the regulatory subunit type 1alpha (RIalpha) of cAMP-dependent protein kinase (PKA). PRKAR1A inactivation is associated with dysregulated PKA activity that is thought to result in tumorigenesis. mt-PRKAR1A-bearing lymphocytes from Carney complex patients exhibit enhanced cell proliferation associated with increased expression of the MAPK ERK1/2 pathway. OBJECTIVE: The objective of the study was to determine how PKA and its subunits and ERK1/2 and their molecular partners change in the presence of PRKAR1A mutations in adrenocortical tissue. DESIGN: PKA activity and subunit expression, ERK1/2, other immunoassays, and immunohistochemistry on adrenocortical samples from patients with germline normal or mt-PRKAR1A were analyzed. RESULTS: Increased cAMP-stimulated total kinase activity was associated with mt-PRKAR1A. PKA subunit expression analysis in mt-PRKAR1A tissues, by quantitative mRNA assay and immunoblotting, showed a 2.4-fold (P = 0.02) and 1.8-fold (P = 0.09) decrease in RIalpha's message and protein, respectively, and increases in other PKA subunits. Immunoassays showed 2-fold (P = 0.03) and 6-fold (P = 0.03) decreases in baseline ERK1/2, with corresponding increases in phosphorylated (p) ERK1/2 in mt-PRKAR1A samples. B-raf kinase, p-MEK1/2, and p-c-Myc, but not p-Akt/ protein kinase B, were significantly increased. Immunohistochemistry studies supported these data. CONCLUSIONS: mt-PRKAR1A causes increased total cAMP-stimulated kinase activity, likely the result of up-regulation of other PKA subunits caused by down-regulation of RIalpha, as seen in human lymphocytes and mouse animal models. These changes, associated with enhanced MAPK activity, may be, in part, responsible for the proliferative signals that result in primary pigmented nodular adrenocortical disease.[1]

References

  1. PRKAR1A Mutations and protein kinase A interactions with other signaling pathways in the adrenal cortex. Robinson-White, A., Meoli, E., Stergiopoulos, S., Horvath, A., Boikos, S., Bossis, I., Stratakis, C.A. J. Clin. Endocrinol. Metab. (2006) [Pubmed]
 
WikiGenes - Universities