Identification of the nonreceptor tyrosine kinase MATK/CHK as an essential regulator of immune cells using Matk/CHK-deficient mice.
Matk/CHK knockout mice were reported to show no apparent phenotypic abnormalities. This was thought to be due to the homologous kinase Csk that compensates for Matk/CHK. Here, we present the first evidence that the nonreceptor tyrosine kinase, Matk/CHK, is an important modulator of immune cell signaling. We found that the frequency of primitive hematopoietic cells, the side population c-kit(+) Lin(-) Sca-1(+) (SPKLS) cells, in Matk/CHK(-/-) mice was increased 2.2-fold compared with the control mice. Moreover, Matk/CHK deficiency led to significantly higher pre-B cell colony formation following IL-7 stimulation. Interestingly, when mice received the in vivo antigen challenge of TNP-ovalbumin followed by restimulation, the Matk/CHK(-/-) lymph node and spleen cells produced significantly lower IFN-gamma levels compared with the respective wild-type cells. Our study indicates that Matk/CHK is not functionally redundant with Csk, and that this tyrosine kinase plays an important role as a regulator of immunologic responses.[1]References
- Identification of the nonreceptor tyrosine kinase MATK/CHK as an essential regulator of immune cells using Matk/CHK-deficient mice. Lee, B.C., Avraham, S., Imamoto, A., Avraham, H.K. Blood (2006) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg