The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Platelet-derived growth factor is a potent biologic response modifier of T cells.

Freshly isolated lymph node (LN) cells cultured in serum-containing medium were restricted to produce primarily interleukin 2 (IL-2) subsequent to T cell activation. Only minimal amounts of IL-4, IL-5, or interferon gamma (IFN-gamma) were produced under these conditions. Similar populations of LN cells cultured in serum-free medium were able to produce a variety of lymphokines after T cell activation, with the relative quantities of each species being dependent upon the lymphoid organ source of the lymphocytes. A similar relationship in the patterns of lymphokines produced by activated T cell hybridomas maintained under serum-free conditions was also observed, whereas activation in serum-supplemented media resulted in a predominant restriction to the secretion of IL-2. Additional studies determined that the entity in serum responsible for restricting T cell function in vitro was platelet-derived growth factor (PDGF). The PDGF-BB isoform was established to be the most active in the regulation of T cell function, enhancing IL-2 while depressing the production of IL-4, IL-5, and IFN-gamma at concentrations below 1 ng/ml. PDGF-AB was also found to be quite active, however, this isoform of PDGF was incapable of influencing IFN-gamma production at the concentrations tested. PDGF-AA was very weakly active. It therefore appears that PDGF, acting primarily through a beta receptor subunit (either alpha/beta- or beta/beta-type receptors) is able to influence profoundly the behavior of T cells, with some of its modulatory effects exhibiting isoform specificity. This is reflected by an enhancement in the production of IL-2, while simultaneously depressing the secretion of IL-4, IL-5, and IFN-gamma (PDGF-BB only) after T cell activation. Kinetic studies, where cell supernatants were analyzed both 24 and 48 h after T cell activation, suggested that "desensitization" to PDGF influences can occur naturally in vitro. Those species of lymphokines that were inhibited by PDGF over the first 24 h after activation could be produced at normal levels over the subsequent 24-h period. Finally, lymphokines maintained in the presence of PDGF-BB for greater than 24 h before their activation lost sensitivity to this growth factor. These cells regained responsiveness to PDGF after an additional incubation period in PDGF-free medium. Collectively, our data imply that the pattern of T cell lymphokines produced, plus the kinetics of their production after activation, are being controlled by the potent serum growth factor PDGF.(ABSTRACT TRUNCATED AT 400 WORDS)[1]

References

  1. Platelet-derived growth factor is a potent biologic response modifier of T cells. Daynes, R.A., Dowell, T., Araneo, B.A. J. Exp. Med. (1991) [Pubmed]
 
WikiGenes - Universities