The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

SUMOylation Attenuates Sensitivity toward Hypoxia- or Desferroxamine-Induced Injury by Modulating Adaptive Responses in Salivary Epithelial Cells.

Hypoxic stress activates various signal transduction pathways including posttranslational modification with the ubiquitin-like SUMO protein (SUMOylation). However, the molecular mechanisms by which SUMOylation regulates hypoxic responses remain unclear. Here, we investigated the ability of rat salivary Pa-4 epithelial cells to resist cell injury elicited by 1% O(2)- or hypoxia-mimetic desferroxamine (DFO)-stimulated SUMOylation processes. By using Pa-4 cells stably transduced with lenti-SUMO-1 and a cell-permeant peptide harboring SUMO-binding motif to interfere with SUMO-dependent protein-protein interactions, we demonstrate that SUMOylation augments cell survival against DFO treatment. This appeared to be partly mediated through attenuation of Protein Kinase C (PKC)-delta activation and caspase-3 cleavage, hallmarks of pro-apoptotic signaling. Intriguingly, DFO-induced phosphorylation of DNA damage marker ataxia-telangiectasia-mutated protein S1981 preceded activation of PKCdelta and caspase-3. Constitutive SUMOylation facilitated 1% O(2)- or DFO-induced nuclear factor kappaB transactivation, possibly via activation of genotoxic signaling cascade. In addition, we observed transient preservation of transepithelial electrical resistance during the early stage of hypoxia (1% O(2)) as well as enhanced transepithelial electrical resistance recovery after prolonged hypoxia in SUMO-1-expressing cell monolayers. In conclusion, our results unveil a previously unrecognized mechanism by which SUMOylation and activation of ataxia-telangiectasia-mutated protein, PKCdelta, caspase-3, and nuclear factor kappaB signaling pathways modulate salivary adaptive responses to stress in cells exposed to either 1% O(2) or DFO.[1]

References

  1. SUMOylation Attenuates Sensitivity toward Hypoxia- or Desferroxamine-Induced Injury by Modulating Adaptive Responses in Salivary Epithelial Cells. Nguyen, H.V., Chen, J.L., Zhong, J., Kim, K.J., Crandall, E.D., Borok, Z., Chen, Y., Ann, D.K. Am. J. Pathol. (2006) [Pubmed]
 
WikiGenes - Universities