The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Inhibition of transforming growth factor beta-enhanced serum response factor-dependent transcription by SMAD7.

Transforming growth factor (TGF)-beta is present in large amounts in the airways of patients with asthma and with other diseases of the lung. We show here that TGFbeta treatment increased transcriptional activation of SM22alpha, a smooth muscle-specific promoter, in airway smooth muscle cells, and we demonstrate that this effect stems in part from TGFbeta-induced enhancement of serum response factor (SRF) DNA binding and transcription promoting activity. Overexpression of Smad7 inhibited TGFbeta-induced stimulation of SRF-dependent promoter function, and chromatin immunoprecipitation as well as co-immunoprecipitation assays established that endogenous or recombinant SRF interacts with Smad7 within the nucleus. The SRF binding domain of Smad7 mapped to the C-terminal half of the Smad7 molecule. TGFbeta treatment weakened Smad7 association with SRF, and conversely the Smad7-SRF interaction was increased by inhibition of the TGFbeta pathway through overexpression of a dominant negative mutant of TGFbeta receptor I or of Smad3 phosphorylation-deficient mutant. Our findings thus reveal that SRF-Smad7 interactions in part mediate TGFbeta regulation of gene transcription in airway smooth muscle. This offers potential targets for interventions in treating lung inflammation and asthma.[1]

References

  1. Inhibition of transforming growth factor beta-enhanced serum response factor-dependent transcription by SMAD7. Camoretti-Mercado, B., Fernandes, D.J., Dewundara, S., Churchill, J., Ma, L., Kogut, P.C., McConville, J.F., Parmacek, M.S., Solway, J. J. Biol. Chem. (2006) [Pubmed]
 
WikiGenes - Universities