The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Dihydroorotase from Escherichia coli. Substitution of Co(II) for the active site Zn(II).

Treatment of Escherichia coli dihydroorotase (a homodimer of subunit molecular weight 38,729) containing only the 1 active site Zn(II) ion per subunit with the sulfhydryl reagent N-(ethyl)-maleimide (NEM) blocks the two external Zn(II) sites per subunit and dramatically lessens the precipitation caused by high concentrations of Zn(II); stabilizes the enzyme partially against air oxidation and dilution inactivation; makes the active site Zn(II) easier to remove; and lowers Km and increases kcat. Treatment of NEM-blocked dihydroorotase ((NEM)dihydroorotase) with the chelator 2,6-pyridinedicarboxylic acid at pH 5.0 in the absence of oxygen and trace metal ions removes the active site Zn(II) with a half-life of 15 min, allowing the production of milligram amounts of moderately stable apo-(NEM)dihydroorotase in about 80% yield. Treatment of apo-(NEM)dihydroorotase with Co(II) at pH 7.0 produces (NEM)dihydroorotase completely substituted at the active site with Co(II) in 100% yield: analysis gives 0.95-1.1 g atoms of Co(II) per active site and 0.03-0.05 g atoms of Zn(II) per active site. This Co(II)-(NEM)dihydroorotase is hyperactive at pH 8. The electronic absorption spectrum of Co(II)-(NEM)dihydroorotase at pH 6.5 implicates an active site thiol group as a ligand to the metal ion. The spectrum is inconsistent with tetrahedral coordination of the active site metal ion and is most consistent with a pentacoordinate structure.[1]

References

 
WikiGenes - Universities