The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Pulse radiolysis of 4,4'-bipyridyl aqueous solutions at elevated temperatures: spectral changes and reaction kinetics up to 400 degrees C.

The spectral changes as well as the reaction kinetics of the transient species of 4,4'-bipyridyl (4,4'-bpy) have been experimentally investigated by pulse radiolysis techniques up to 400 degrees C. The results show that the transient species such as OH adduct 4,4'-bpyOH*, monoprotonated electron adduct 4,4'-bpyH*, and doubly protonated electron adduct 4,4'-bpyH2+* have 15-20 nm blue shifts from room temperature to 400 degrees C. For a deaerated neutral solution of 4,4'-bpy in the presence of tert-butyl alcohol, ethanol, or NaCOOH, the doubly protonated electron adduct is the main transient species at room temperature. But at temperatures > 350 degrees C, a monoprotonated form, the N-hydro radical 4,4'-bpyH*, becomes predominant. Interestingly, at room temperature, CO2-* could not efficiently react with 4,4'-bpy, but the reaction was accelerated with increasing temperature; at 350 degrees C, this reaction completed within 2 mus. Using an alkaline solution (pH = 11.5) of 4,4'-bpy in the presence of tert-butyl alcohol, we studied the N-hydro radical 4,4'-bpyH* from room temperature to 400 degrees C at 25 MPa. An estimation of the temperature-dependent G(e(aq)-) at 25 MPa agrees with our previous result with methyl viologen as a scavenger.[1]

References

  1. Pulse radiolysis of 4,4'-bipyridyl aqueous solutions at elevated temperatures: spectral changes and reaction kinetics up to 400 degrees C. Lin, M., Katsumura, Y., He, H., Muroya, Y., Han, Z., Miyazaki, T., Kudo, H. The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment & general theory. (2005) [Pubmed]
 
WikiGenes - Universities