The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

In vivo imaging of functional disruption, recovery and alteration in rat olfactory circuitry after lesion.

Compensatory changes following disruption of neuronal circuitry have been indicated by previous imaging studies of stroke and other brain injury, but evidence of the pathways involved in such dynamic changes has not been shown in vivo. We imaged rats before and after lesion-induced disruption of the lateral olfactory tract to investigate the subsequent recovery and/or reorganization of functional neuronal circuitry. Serial magnetic resonance imaging was performed following intranasal administration of a paramagnetic track tracer Mn(2+). Images were analyzed using statistical mapping techniques in the stereotactic coordinate system. At 1 week post-lesion, Mn(2+) transport caudal to lesion was reduced as expected, and more importantly, increased transport through the anterior commissure was seen. At 4 weeks post-lesion, there was recovery of transport caudal to lesion, and increased transport through the anterior commissure extended to the contralateral olfactory cortex. Correlation analysis of regional Mn(2+) transport indicated that contralateral enhancement was not simply due to septal window spillover. This study demonstrates for the first time in vivo evidence of compensatory changes in functional neuronal activity to a contralateral pathway through the commissure following brain injury.[1]

References

  1. In vivo imaging of functional disruption, recovery and alteration in rat olfactory circuitry after lesion. Cross, D.J., Flexman, J.A., Anzai, Y., Morrow, T.J., Maravilla, K.R., Minoshima, S. Neuroimage (2006) [Pubmed]
 
WikiGenes - Universities