The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Metabolism and Disposition of Vatalanib (PTK787/ZK-222584) in Cancer Patients.

Vatalanib (PTK787/ZK-222584) is a new oral antiangiogenic molecule that inhibits all known vascular endothelial growth factor receptors. Vatalanib is under investigation for the treatment of solid tumors. Disposition and biotransformation of vatalanib were studied in an open-label, single-center study in patients with advanced cancer. Seven patients were given a single oral (14)C-radiolabeled dose of 1000 mg of vatalanib administered at steady state, obtained after 14 consecutive daily oral doses of 1000 mg of nonradiolabeled vatalanib. Plasma, urine, and feces were analyzed for radioactivity, vatalanib, and its metabolites. Metabolite patterns were determined by high-performance liquid chromatography coupled to radioactivity detection with off-line microplate solid scintillation counting and characterized by LC-MS. Vatalanib was well tolerated. The majority of adverse effects corresponded to common toxicity criteria grade 1 or 2. Two patients had stable disease for at least 7 months. Plasma C(max) values of (14)C radioactivity (38.3 +/- 26.0 muM; mean +/- S.D., n = 7) and vatalanib (15.8 +/- 9.5 muM) were reached after 2 and 1.5 h (median), respectively, indicating rapid onset of absorption. Terminal elimination half-lives in plasma were 23.4 +/- 5.5 h for (14)C radioactivity and 4.6 +/- 1.1 h for vatalanib. Vatalanib cleared mainly through oxidative metabolism. Two pharmacologically inactive metabolites, CGP-84368/ZK-260120 [(4-chlorophenyl)-[4-(1-oxy-pyridin-4-yl-methyl)-phthalazin-1-yl]-amine] and NVP-AAW378/ZK-261557 [rac-4-[(4-chloro-phenyl)amino]-alpha-(1-oxido-4-pyridyl)phthalazine-1-methanol], having systemic exposure comparable to that of vatalanib, contributed mainly to the total systemic exposure. Vatalanib and its metabolites were excreted rapidly and mainly via the biliary-fecal route. Excretion of radioactivity was largely complete, with a radiocarbon recovery between 67% and 96% of dose within 7 days (42-74% in feces, 13-29% in urine).[1]

References

  1. Metabolism and Disposition of Vatalanib (PTK787/ZK-222584) in Cancer Patients. Jost, L.M., Gschwind, H.P., Jalava, T., Wang, Y., Guenther, C., Souppart, C., Rottmann, A., Denner, K., Waldmeier, F., Gross, G., Masson, E., Laurent, D. Drug Metab. Dispos. (2006) [Pubmed]
 
WikiGenes - Universities