The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Dissecting the Roles of Checkpoint Kinase 1/CDC2 and Mitogen-Activated Protein Kinase Kinase 1/2/Extracellular Signal-Regulated Kinase 1/2 in Relation to 7-Hydroxystaurosporine-Induced Apoptosis in Human Multiple Myeloma Cells.

The functional roles of Cdc2 and checkpoint kinase 1 (Chk1) in synergistic interactions between 7-hydroxystaurosporine (UCN-01) and mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitors [e.g., 2-(2-chloro-4-iodophenylamino)-N-cyclopropylmethoxy-3,4-difluorobenzamide (PD184352)] were examined in human multiple myeloma cells in relation to MEK1/2/ERK1/2 activation and lethality. Time course studies revealed that MEK1/2/extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation preceded Cdc2 dephosphorylation (Tyr15) after UCN-01 exposure. Furthermore, enforced expression of Cdc2 or small inducible RNA (siRNA)- mediated Cdc2 knockdown failed to modify ERK1/2 activation status in either the presence or absence of UCN-01, arguing against a causal relationship between these events. However, ectopic expression of Cdc2 sensitized cells to the lethality of UCN-01/MEK inhibitor regimen, whereas Cdc2 knockdown by siRNA significantly diminished the lethal effects of this combination. Conversely, Chk1 knockdown by siRNA enhanced lethality mediated by UCN-01/PD184352. It is interesting that Chk1 knockdown reduced basal ERK1/2 activation and antagonized the ability of UCN-01 to activate ERK1/2. Finally, ectopic expression of constitutively active MEK1 significantly protected cells from the UCN-01/MEK1/2 inhibitor regimen without modifying Cdc2 activation status. Together, these findings indicate that although UCN-01-mediated Chk1 inhibition and Cdc2 activation are unlikely to be responsible for MEK1/2/ERK1/2 activation, both of these events contribute functionally to enhanced lethality in cells coexposed to MEK inhibitors. They also suggest a role for Chk1 in UCN-01- induced ERK1/2 activation, implying the existence of a heretofore unrecognized link between Chk1 and ERK1/2 signaling.[1]

References

 
WikiGenes - Universities