The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway.

Dysfunction of the endoplasmic reticulum (ER) has been reported in a variety of human pathologies, including cancer. However, the contribution of the ER to the early stages of normal cell transformation is largely unknown. Using primary human melanocytes and biopsies of human naevi (moles), we show that the extent of ER stress induced by cellular oncogenes may define the mechanism of activation of premature senescence. Specifically, we found that oncogenic forms of HRAS (HRAS(G12V)) but not its downstream target BRAF (BRAF(V600E)), engaged a rapid cell-cycle arrest that was associated with massive vacuolization and expansion of the ER. However, neither p53, p16(INK4a) nor classical senescence markers - such as foci of heterochromatin or DNA damage - were able to account for the specific response of melanocytes to HRAS(G12V). Instead, HRAS(G12V)-driven senescence was mediated by the ER-associated unfolded protein response (UPR). The impact of HRAS on the UPR was selective, as it was poorly induced by activated NRAS (more frequently mutated in melanoma than HRAS). These results argue against premature senescence as a converging mechanism of response to activating oncogenes and support a direct role of the ER as a gatekeeper of tumour control.[1]


  1. Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Denoyelle, C., Abou-Rjaily, G., Bezrookove, V., Verhaegen, M., Johnson, T.M., Fullen, D.R., Pointer, J.N., Gruber, S.B., Su, L.D., Nikiforov, M.A., Kaufman, R.J., Bastian, B.C., Soengas, M.S. Nat. Cell Biol. (2006) [Pubmed]
WikiGenes - Universities