The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Flap endonuclease disengages dna2 helicase/nuclease from okazaki fragment flaps.

Okazaki fragments contain an initiator RNA/DNA primer that must be removed before the fragments are joined. In eukaryotes, the primer region is raised into a flap by the strand displacement activity of DNA polymerase delta. The Dna2 helicase/nuclease and then flap endonuclease 1 (FEN1) are proposed to act sequentially in flap removal. Dna2 and FEN1 both employ a tracking mechanism to enter the flap 5' end and move toward the base for cleavage. In the current model, Dna2 must enter first, but FEN1 makes the final cut at the flap base, raising the issue of how FEN1 passes the Dna2. To address this, nuclease-inactive Dna2 was incubated with a DNA flap substrate and found to bind with high affinity. FEN1 was then added, and surprisingly, there was little inhibition of FEN1 cleavage activity. FEN1 was later shown, by gel shift analysis, to remove the wild type Dna2 from the flap. RNA can be cleaved by FEN1 but not by Dna2. Pre-bound wild type Dna2 was shown to bind an RNA flap but not inhibit subsequent FEN1 cleavage. These results indicate that there is a novel interaction between the two proteins in which FEN1 disengages the Dna2 tracking mechanism. This interaction is consistent with the idea that the two proteins have evolved a special ability to cooperate in Okazaki fragment processing.[1]

References

  1. Flap endonuclease disengages dna2 helicase/nuclease from okazaki fragment flaps. Stewart, J.A., Campbell, J.L., Bambara, R.A. J. Biol. Chem. (2006) [Pubmed]
 
WikiGenes - Universities