The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Characterization of Xenopus digits and regenerated limbs of the froglet.

Xenopus has 4 and 5 digits in a forelimb and hindlimb, respectively. It is thought that their limbs and digits develop in Xenopus by mechanisms that are almost conserved from amphibians to higher vertebrates. This is supported by some molecular evidence. The 5'hoxd genes are convenient marker genes for characterizing digits in the chick and mouse. The anteriormost digit is characterized by being hoxd13-positive and hoxd12 (hoxd11)-negative in the chick and mouse. In this study, we revealed that the anteriormost digit of the Xenopus forelimb is hoxd13-positive and hoxd11-positive, that is, a more posterior character than digit I. The order of formation of digit cartilages also suggested that Xenopus forelimb digit identity is II to V, not I to IV. We have also been interested in the relationship between digit identity and shh. The anteriormost digit develops in a shh-independent way. A limb treated with cyclopamine (a shh inhibitor) has a gene expression pattern (hoxd11-negative) similar to that in shh-deficient mice, suggesting that a hindlimb treated with cyclopamine has a digit I character. However, a Xenopus froglet regenerate (spike), which lacks shh expression during its regeneration process, does not have such an expression pattern, being hoxd11-positive. We investigated hoxd11 transcriptions in blastemas that formed in the anteriormost and posteriormost digits, and we found that the blastemas have different hoxd11 expression levels. These findings suggest that the froglet limb blastema does not have a mere digit I character in spite of shh defectiveness and that the froglet limb blastema recognizes its positional differences along the anterior-posterior axis. Developmental Dynamics 235:3316-3326, 2006. (c) 2006 Wiley-Liss, Inc.[1]

References

  1. Characterization of Xenopus digits and regenerated limbs of the froglet. Satoh, A., Endo, T., Abe, M., Yakushiji, N., Ohgo, S., Tamura, K., Ide, H. Dev. Dyn. (2006) [Pubmed]
 
WikiGenes - Universities