The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Arsenic-induced bladder cancer in an animal model.

Dimethylarsinic acid (DMA(V)) is carcinogenic to the rat urinary bladder, but not in mice. The carcinogenic mode of action involves cytotoxicity followed by regenerative cell proliferation. Dietary DMA(V) does not produce urinary solids or significant alterations in urinary composition. The cytotoxicity is due to formation of a reactive metabolite, likely dimethylarsinous acid (DMA(III)), concentrated and excreted in the urine. Urinary concentrations of DMA(III) are dose-dependent, and the urinary concentrations are at cytotoxic levels based on in vitro studies. The no observed effect level (NOEL) in these rat dietary studies for detectable levels of DMA(III), cytotoxicity, and proliferation is 2 ppm, with marginal changes at 10 ppm. The tumorigenic dose is 100 ppm. Recent investigations have demonstrated that arsenicals administered to the rat result in binding to a specific cysteine in the hemoglobin alpha chain as DMA(III), regardless of the arsenical being administered. Monomethylarsonic acid (MMA(V)) is not carcinogenic in rats or mice. In short term experiments (< or =10 weeks), sodium arsenate in the drinking water induces significant cytotoxicity and regenerative proliferation. There is little evidence that the cytotoxicity produced following administration of arsenicals is caused by oxidative damage, as antioxidants show little inhibitory activity of the cytotoxicity of the various arsenicals either in vitro or in vivo. In summary, the mode of action for DMA(V)-induced bladder carcinogenesis in the rat involves generation of a reactive metabolite (DMA(III)) leading to cytotoxicity and regenerative proliferation, is a non-linear process, and likely involves a threshold. Extrapolation to human risk needs to take this into account along with the significant differences in toxicokinetics and toxicodynamics that occur between different species.[1]

References

  1. Arsenic-induced bladder cancer in an animal model. Cohen, S.M., Ohnishi, T., Arnold, L.L., Le, X.C. Toxicol. Appl. Pharmacol. (2007) [Pubmed]
 
WikiGenes - Universities