The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Hyporesponsiveness to Natural Killer T-Cell Ligand {alpha}-Galactosylceramide in Cancer-Bearing State Mediated by CD11b+ Gr-1+ Cells Producing Nitric Oxide.

CD1d-restricted natural killer T (NKT) cells are a potential therapeutic target for cancer, for which several clinical trials have already been reported. NKT cells are specifically activated by a synthetic glycolipid, alpha-galactosylceramide (alpha-GalCer). However, it is known that, in human cancer patients, NKT cells express a degree of hyporesponsiveness to alpha-GalCer. In this study, we have examined the mechanism by which hyporesponsiveness to alpha-GalCer can be induced. In cancer-bearing mice, alpha-GalCer-induced NKT cell expansion, cytokine production, cytotoxicity, and antimetastatic effect in vivo were all significantly impaired. In fact, alpha-GalCer could eliminate metastatic disease in naive animals but failed to protect cancer-bearing mice. CD11b(+) Gr-1(+) cells were particularly increased in cancer-bearing mice and were necessary and sufficient for the suppression of the alpha-GalCer response in a nitric oxide-mediated fashion. Administration of a retinoic acid to cancer-bearing mice reduced the population of CD11b(+) Gr-1(+) cells and effectively restored alpha-GalCer-induced protection. These results show a novel feature of NKT cell function in cancer. Furthermore, our data suggest a new strategy to enhance NKT cell-mediated anticancer immune responses by suppressing CD11b(+) Gr-1(+) cell functions. (Cancer Res 2006; 66(23): 11441-6).[1]

References

 
WikiGenes - Universities