The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Dynamics of leukocyte-platelet adhesion in whole blood.

The dynamics of leukocyte-platelet adhesion and platelet-platelet interaction in whole blood are not well understood. Using different platelet agonists, we have studied the whole blood kinetics of these heterotypic and homotypic interactions, the relative abilities of different leukocyte subsets to participate in platelet adhesion, and the ligands responsible for adhesion. When platelet aggregation was inhibited by the Arg-Gly-Asp-Ser (RGDS) peptide, thrombin stimulation of whole blood resulted in platelet expression of granule membrane protein 140 (GMP-140) and, simultaneously, a marked increase in the percentage of monocytes and neutrophils (PMN) binding platelets, as well as an increase in the number of platelets bound per monocyte and PMN. Lymphocytes were unaffected. Monocytes bound more platelets and at an initially faster rate than PMN. This increase in monocyte and PMN adhesion to platelets was completely inhibited by the blocking monoclonal antibody (MoAb), G1, to GMP-140. When the combination of epinephrine and adenosine diphosphate (epi/ADP) was used as a less potent agonist in the presence of RGDS, GMP-140 expression per platelet was less, and while monocyte-platelet conjugates formed, PMN-platelet conjugates did not. With epi/ADP in the absence of RGDS, there was an immediate, marked decrease in the percentage of all leukocytes with bound platelets, simultaneous with an increase in the percentage of unbound platelet aggregates. As these platelet aggregates dissociated, the percentage of monocytes and PMN with adherent platelets increased, with monocytes again binding at a faster initial rate than PMN. This recovery of monocyte and PMN adhesion to platelets was also inhibited by the G1 MoAb. We conclude that: (1) monocytes and PMN bind activated platelets in whole blood through GMP-140; (2) monocytes have a competitive advantage over PMN in binding activated platelets, particularly when less potent platelet agonists are used; and (3) platelet aggregate formation initially competes unactivated platelets off leukocytes; subsequent aggregate dissociation allows the now activated platelets to readhere to monocytes and PMN through GMP-140. These studies further elucidate the dynamic interaction of blood cells and possible links between coagulative and inflammatory processes.[1]

References

  1. Dynamics of leukocyte-platelet adhesion in whole blood. Rinder, H.M., Bonan, J.L., Rinder, C.S., Ault, K.A., Smith, B.R. Blood (1991) [Pubmed]
 
WikiGenes - Universities