The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Lipoprotein-associated phospholipase A2 A379V variant is associated with body composition changes in response to exercise training.

Lipoprotein-associated PLA2 (Lp-PLA2) hydrolyses the sn-2 position of glycerophospholipids, in particular platelet activating factor (PAF), generating significant amounts of Lyso-PAF which in turn, via a remodelling pathway, can generate arachidonic acid (AA) from alkyl-acyl-glycerophosphorylcholine. AA is a precursor for prostaglandin synthesis, which regulates adipogenesis through the peroxisome proliferator-activated receptor subfamily. AA may also modulate skeletal muscle growth. We investigated the association of the PLA2G7 A379V variant with changes in body composition in a longitudinal study of 123 male Caucasian army recruits over 10 weeks of intensive physical training. There was no effect of genotype on baseline measures. However, after exercise training, homozygosity for the 379V allele was associated with a decrease in percentage adipose tissue mass (-3.61+/-1.14%), compared to AV (-1.67+/-0.38%) and AA (-1.09+/-0.24%) genotypes (p=0.01), and a significant mean increase (3.51+/-1.17%) in percentage lean mass, compared to AV (1.64+/-0.38%) and AA (1.10+/-0.24%) recruits (p=0.02). The association of this genotype with changes in body composition after training suggests a novel role for Lp-PLA2.[1]

References

  1. Lipoprotein-associated phospholipase A2 A379V variant is associated with body composition changes in response to exercise training. Wootton, P.T., Flavell, D.M., Montgomery, H.E., World, M., Humphries, S.E., Talmud, P.J. Nutrition, metabolism, and cardiovascular diseases : NMCD (2007) [Pubmed]
 
WikiGenes - Universities