The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Liraglutide, a Long-Acting Glucagon-Like Peptide-1 Analog, Reduces Body Weight and Food Intake in Obese Candy-Fed Rats, Whereas a Dipeptidyl Peptidase-IV Inhibitor, Vildagliptin, Does Not.

Metabolic effects of the glucagon-like peptide-1 analog liraglutide and the dipeptidyl peptidase-IV inhibitor vildagliptin were compared in rats made obese by supplementary candy feeding. Female Sprague-Dawley rats were randomized to 12-week diets of chow or chow plus candy. The latter were randomized for 12 further weeks to continue their diet while receiving 0.2 mg/kg liraglutide twice daily subcutaneously, 10 mg/kg vildagliptin twice daily orally, or vehicle or to revert to chow-only diet. Energy expenditure was measured, and oral glucose tolerance tests (OGTTs) were performed. Body composition was determined by dual-energy X-ray absorptiometry scanning, and pancreatic beta-cell mass was determined by histology. Candy feeding increased weight, fat mass, and feeding-associated energy expenditure. Liraglutide or reversal to chow diet fully reversed weight and fat gains. Liraglutide was associated with decreased calorie intake and shifted food preference (increased chow/decreased candy consumption). Despite weight loss, liraglutide-treated rats did not decrease energy expenditure compared with candy-fed controls. Vildagliptin affected neither weight, food intake, nor energy expenditure. OGTTs, histology, and blood analyses indirectly suggested that both drugs increased insulin sensitivity. Liraglutide and vildagliptin inhibited obesity-associated increases in beta-cell mass. This was associated with weight and fat mass normalization with liraglutide, but not vildagliptin, where the ratio of beta-cell to body mass was low.[1]

References

 
WikiGenes - Universities