The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The interaction between retinoic acid and the transforming growth factors-beta in calf articular cartilage organ cultures.

In calf articular cartilage organ cultures, retinoic acid depressed proteoglycan anabolism to levels approximately 10% of control values and increased their catabolism approximately 14-fold at concentrations of 1 x 10(-8) and 1 x 10(-6) M, respectively, leading to a severe depletion of this component from the extracellular matrix (95% loss in 3 weeks). These effects were powerfully antagonized by maximal levels of transforming growth factors-beta (TGF-beta s) 1, 2, and 3, leading to preservation of matrix components. At a concentration of 1 x 10(-8) M retinoic acid, the TGF-beta s restored anabolism to control levels and lowered catabolic rates greater than 3-fold. While the TGF-beta s increased protein synthesis 2- to 3-fold over controls, retinoic acid alone did not change protein synthesis, as determined by incorporation of [3H]serine. Nevertheless, retinoic acid effectively antagonized the stimulation of protein synthesis by TGF-beta and restored control levels of synthesis at 1 x 10(-7) M. Analysis of proteins, labeled using [3H]serine and [35S]sulfate as precursors, by SDS-PAGE revealed that large molecular weight proteins (greater than 100 kDa) were not detectable in retinoic-acid-treated cultures, but treatment with the TGF-beta s restored these components in coincubation cultures, again supporting the antagonistic role of the polypeptide effectors on retinoid action. Treatment of the cultures with retinoic acid elevated levels of TGF-beta 2 synthesis, but not TGF-beta 1. While the role of the newly synthesized TGF-beta 2 in the set of events elicited by retinoic acid in articular cartilage is unclear, the results establish an intrinsic metabolic link between the isoprenoid and TGF-beta in articular cartilage. We propose that the retinoids and TGF-beta s are integral parts of a regulatory network that controls homeostasis, resorption, or growth, depending on their relative contributions.[1]

References

 
WikiGenes - Universities