The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Formation of Triterpenoids throughout Olea europaea Fruit Ontogeny.

Drupes were handpicked from olive (Olea europaea L.) trees, cv chemlali, at 13 distinct stages of fruit development, referred to as weeks after flowering (WAF), and analyzed for their free and esterified sterols and triterpenoids content. These two classes of compounds are synthesized via the acetate/mevalonate pathway and share common precursors up to oxidosqualene (OS). Cyclization of OS in either cycloartenol or beta-amyrin constitutes a branch point between primary (sterol pathway) and secondary (triterpenoid pathway) metabolisms. At the onset of fruit development, i.e., between 12 and 18 WAF, drupes were found to contain high amounts of alpha- and beta-amyrins as well as more-oxygenated compounds such as triterpenic diols (erythrodiol and uvaol) and acids (oleanolic, ursolic and maslinic acids). Concomitantly, sterol precursors were barely detectable. From 21 WAF, when the olive fruit reached its final size and began to turn from green to purple, alpha- and beta-amyrins were no longer present, while 4,4-dimethyl- and 4alpha-methylsterols started to be formed, indicating a redirection of the carbon flux from the triterpenoid pathway towards the sterol pathway. Between 21 and 30 WAF, sterol end products, mainly represented by sitosterol, progressively accumulated and triterpenic diols were replaced by triterpenic acids, essentially maslinic acid. Interestingly, the developing olive fruit was found to accumulate significant amounts of parkeol as an ester conjugate. Whatever the stage of development, triterpenoids represent the major triterpenic compounds of the olive fruit.[1]


  1. Formation of Triterpenoids throughout Olea europaea Fruit Ontogeny. Stiti, N., Triki, S., Hartmann, M.A. Lipids (2007) [Pubmed]
WikiGenes - Universities