The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The effect of insulin on net lipid oxidation predicts worsening of insulin resistance and development of type 2 diabetes mellitus.

Suppression of lipid oxidation (L(ox)) by insulin is impaired in obesity and type 2 diabetes mellitus (T2DM). Here we tested whether high L(ox) represents a primary or acquired characteristic in the pathogenesis of T2DM. Hood-indirect calorimetry was performed under postabsorptive conditions and during a two-step hyperinsulinemic euglycemic clamp (insulin infusion rates in mU.m(-2).min(-1): 40 low and 400 high) in 465 Pima Indians: 317 with normal glucose tolerance (NGT), 117 with impaired glucose tolerance (IGT), and 31 with T2DM. The predictive effect of net lipid oxidation (L(ox)) on development of T2DM was assessed in 296 subjects (51 of whom developed T2DM), whereas the predictive effect of L(ox) on followup changes in insulin-mediated glucose disposal (M) and acute insulin response (AIR) was studied in 190 subjects with NGT at baseline. Cross-sectionally, after adjustment for age, sex, body fat (BF), and M low, L(ox) low was increased in T2DM compared with NGT and IGT subjects (P < 0.05). Prospectively, after adjustment for followup duration, age, sex, BF, M, and AIR, increased clamp L(ox) predicted T2DM [hazard rate ratios (95% CI): L(ox) low, 1.5 (1.1, 2.0), P < 0.01; L(ox) high, 1.3 (1.0, 1.8), P = 0.05]. High L(ox) low at baseline was also associated with subsequent worsening of M low (P = 0.04). These data indicate that the inability of insulin to suppress L(ox) may represent an early risk marker for insulin resistance and T2DM that is independent of adiposity, acute insulin secretion, and insulin action on glucose uptake.[1]

References

  1. The effect of insulin on net lipid oxidation predicts worsening of insulin resistance and development of type 2 diabetes mellitus. Koska, J., Ortega, E., Bogardus, C., Krakoff, J., Bunt, J.C. Am. J. Physiol. Endocrinol. Metab. (2007) [Pubmed]
 
WikiGenes - Universities