The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Fermentative metabolism of pyruvate by Rhodospirillum rubrum after anaerobic growth in darkness.

Rhodospirillum rubrum grew anaerobically in darkness and fermented sodium pyruvate by a pyruvate formate-lyase reaction. During 30 min of anaerobic dark or light incubation with sodium pyrivate, crude extracts from fermentatively grown cells produced about 6 micronmol of acetylphosphate and formate per mg of protein in reactions performed at pH 8. 3. Cell extracts also catalyzed the exchange of sodium [14C]formate into sodium pyruvate at an apparent pH optimum of 7.3 to 7.5, but only about 2.5 micronmol of acetylphosphate was produced at this lower pH value. R. rubrum may also form pyruvate:ferredoxin oxidoreductase activity, as evidenced by low bicarbonate exchange activity. However, its participation in pyruvate metabolism in anaerobic dark-grown cells was not understood. During anaerobic, dark growth with pyruvate, formate was an intermediate in H2 and CO2 gas evolution. In contrast with H2 production by a light-dependent H2-nitrogenase system in photosynthetically grown cells, H2 formation in fermenting R. rubrum occurred through a carbon monoxide-sensitive formic hydrogenlyase reaction not influenced by light.[1]

References

 
WikiGenes - Universities