The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Growth-related effects of oxidant-induced stress on cultured RPE and choroidal endothelial cells.

Mounting evidence suggests that oxidative stress caused by reactive oxygen intermediates is a significant mechanism in the pathogenesis of age-related macular degeneration (AMD). Although vascular endothelial growth factor (VEGF) and other cytokines are involved in choroidal neovascularization (CNV) it is largely unknown whether oxidative stress may predispose the eye to increased levels of proangiogenic factors. In an in vitro study we have determined viability and proliferation of both human retinal pigment epithelial (RPE) cells and bovine choroidal endothelial cells (CECs) and assessed the release of basic fibroblast growth factor (bFGF) and VEGF from RPE cells after exposing them to oxidative stress. Permanent presence of tert-butyl-hydroperoxide (tBH), a pro-oxidative stressor, in the cell cultures resulted in decreasing viability and proliferation of RPE cells and CECs. Loss of RPE cell viability was associated with activation of apoptosis by tBH in a dose-dependent manner. The antioxidant, N-acetyl-L-cysteine (NAC), and secreted soluble mediators of RPE cells were appropriate to attenuate the effects of tBH-mediated oxidative stress. RPE cells exposed to tBH were found to release increasing amounts of bFGF but not VEGF after 24h of culture, thereby supporting proliferation of CECs. These findings suggest that oxidative stress compromises the viability of RPE cells and CECs. However, increased bFGF levels concomitantly released from RPE cells may attenuate the CEC-directed effect, protect CECs from oxidative insults, and are likely to promote CNV.[1]

References

  1. Growth-related effects of oxidant-induced stress on cultured RPE and choroidal endothelial cells. Eichler, W., Reiche, A., Yafai, Y., Lange, J., Wiedemann, P. Exp. Eye Res. (2008) [Pubmed]
 
WikiGenes - Universities