The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Effects of clonidine on lidocaine-induced inhibition of axonal transport in cultured mouse dorsal root ganglion neurones.

BACKGROUND: The alpha(2)-adrenoceptor agonist clonidine is used in combination with lidocaine for anaesthesia. Lidocaine inhibits axonal transport and neurite growth, whereas alpha(2)-adrenoceptor agonists have neurotrophic effects. Here we have investigated whether clonidine reduces lidocaine-induced inhibition of axonal transport in cultured mouse dorsal root ganglion neurones. METHODS: Axonal transport of organelles and neurite growth were assessed by video microscopy in cells treated with clonidine and lidocaine for 1 h. Stable responses were achieved within this period. RESULTS: Clonidine (10 and 100 microM) increased and lidocaine (10, 100 microM, and 1 mM) decreased axonal transport. The inhibitory effects of lidocaine were reduced by simultaneous treatment with clonidine. The actions of clonidine were antagonized by the alpha(2)-adrenoceptor antagonist yohimbine. Since clonidine was reported to block N-type channels, we further investigated the role of ion channels in the antagonistic action of clonidine on the lidocaine response. The action of lidocaine on axonal transport was not mimicked by the Na+ channel blocker tetrodotoxin and not blocked by the Na+ channel activator veratridine. The action of lidocaine was not blocked by the L-type Ca2+ channel blocker nifedipine, but was blocked by the N-type channel blocker omega-conotoxin MVIIA. These effects on axonal transport correlated with the effects on neurite growth. CONCLUSIONS: Inhibition of axonal transport induced by lidocaine, which may be mediated by N-type channel activation, can be blocked by clonidine. Clonidine may alleviate the effects of lidocaine on neuronal dysfunction.[1]

References

  1. Effects of clonidine on lidocaine-induced inhibition of axonal transport in cultured mouse dorsal root ganglion neurones. Hiruma, H., Shimizu, K., Takenami, T., Sugie, H., Kawakami, T. Br. J. Anaesth (2008) [Pubmed]
 
WikiGenes - Universities