Exploiting cellular-developmental evolution as the scientific basis for preventive medicine

Med Hypotheses. 2009 May;72(5):596-602. doi: 10.1016/j.mehy.2008.09.057. Epub 2009 Jan 14.

Abstract

In the post-genomic era, we must make maximal use of this technological advancement to broaden our perspective on biology and medicine. Our understanding of the evolutionary process is undermined by looking at it retrospectively, perpetuating a descriptive rather than a mechanistic approach. The reintroduction of developmental biologic principles into evolutionary studies, or evo-devo, allows us to apply embryologic cell-molecular biologic principles to the mechanisms of phylogeny, obviating the artificial space and time barriers between ontogeny and phylogeny. This perspective allows us to consider the continuum between the proximate and ultimate causes of speciation, which was unthinkable when looked at from the descriptive perspective. Using a cell-cell interactive 'middle-out' approach, we have gained insight to the evolution of the lung from the swim bladder of fish based on gene regulatory networks that generate both lung ontogeny and phylogeny, i.e. decreased alveolar size, decreased alveolar wall thickness, and increased alveolar wall strength. Vertical integration of cell-cell interactions predicts the adaptivity and maladaptivity of the lung, leading to novel insights for chronic lung disease. Since we have employed principles involved in all of development, this approach is amenable to all biologic structures, functions, adaptations, maladaptations, and diseases, providing an operational basis for preventive medicine.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Biological Evolution*
  • Humans
  • Models, Theoretical
  • Preventive Medicine*
  • Signal Transduction