The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Evaluation of the role of conserved His and Met residues among lipoxygenases by site-directed mutagenesis of recombinant human 5-lipoxygenase.

The 5-, 12-, and 15-lipoxygenases contain a highly conserved sequence of the form His-(X)4-His-(X)4-His-(X)17-His-(X)8-His which represents a potential binding site for non heme iron to the protein. The importance of selected amino acids within this His cluster for the activity of human 5-lipoxygenase was investigated by site-directed mutagenesis using bacteria and insect cells expression systems. After single mutation of each of the 5 His residues at positions 363, 368, 373, 391, and 400 by Ser, Cys, or Lys, measurable levels of 5-lipoxygenase activity could be recovered in Escherichia coli only for the Ser363 and Cys363 mutants, with most amino acid substitutions causing a decrease in the levels of expression of the soluble protein. In contrast, 25-80% of soluble 5-lipoxygenase activity was recovered after the replacement of several of the hydrophobic amino acids in this region: Tyr384 by Ser or Phe; Phe394 by Trp and Val375 by Ala. Met436 could be replaced by Leu with little effect on 5-lipoxygenase activity or turnover inactivation half-time. High levels of mutant 5-lipoxygenases containing a Ser residue instead of His at each of the five positions were also expressed in Spodoptera frugiperda (Sf9) cells infected with recombinant baculovirus. The specific activity (58-75% of control) and the reaction time course of the Ser363, Ser391, and Ser400 mutants were comparable with that of native 5-lipoxygenase whereas inactive proteins were obtained for the Ser368 and Ser373 mutants. These results show that His368 and His373 residues are important for 5-lipoxygenase activity and that the other conserved His363, His391, His400, and Met436 residues are not crucial for the catalytic cycle or for the mechanism of self-inactivation of 5-lipoxygenase.[1]

References

 
WikiGenes - Universities