The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Crosstalk between inflammation and thrombosis.

Inflammation shifts the hemostatic mechanisms in favor of thrombosis. Multiple mechanisms are at play including up regulation of tissue factor leading to the initiation of clotting, amplification of the clotting process by augmenting exposure of cellular coagulant phospholipids, inhibition of fibrinolysis by elevating plasminogen activator inhibitor 1 (PAI-1) and decreases in natural anticoagulant pathways, particularly targeted toward down regulation of the protein C anticoagulant pathway through multiple mechanisms. The decreased function of the natural anticoagulant pathways may be particularly problematic because these appear to play a role in dampening inflammatory responses. The protein C anticoagulant pathway provides a useful model for the impact of inflammation on coagulation. This pathway plays a major role in preventing microvascular thrombosis. The pathway is initiated when thrombin binds to thrombomodulin (TM) on the surface of the endothelium. An endothelial cell protein C receptor (EPCR) augments protein C activation by the thrombin-TM complex more than 10-fold in vivo. EPCR is shed from the endothelium by inflammatory mediators and thrombin. EPCR binds to activated neutrophils in a process that involves proteinase 3 and Mac-1 and appears to inhibit leukocyte extravisation. EPCR can undergo translocation from the plasma membrane to the nucleus where it redirects gene expression. During translocation it can carry activated protein C (APC) to the nucleus, possibly accounting for the ability of APC to modulate inflammatory mediator responses in the endothelium. TNF alpha and other inflammatory mediators can down-regulate EPCR and TM and IL-6 can depress levels of protein S in experimental animals. Inhibition of protein C pathway function increases cytokine elaboration, endothelial cell injury and leukocyte extravisation in response to endotoxin, processes that are decreased by infusion of APC. In vitro, APC inhibits TNF alpha elaboration from monocytes and to block leukocyte adhesion to selectins. Since thrombin can elicit many inflammatory responses in microvascular endothelium, loss of control of microvascular thrombin generation due to impaired protein C pathway function probably contributes to microvascular dysfunction in sepsis.[1]

References

  1. Crosstalk between inflammation and thrombosis. Esmon, C.T. Maturitas (2008) [Pubmed]
 
WikiGenes - Universities