The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Sequential activation of genes for heme pathway enzymes during erythroid differentiation of mouse Friend virus-transformed erythroleukemia cells.

Changes in the level of transcripts encoding enzymes of the heme biosynthetic pathway as well as those encoding ubiquitous proteins were examined in murine Friend virus-transformed erythroleukemia cells during erythroid cell differentiation induced by chemicals including dimethyl sulfoxide (DMSO). Early changes following DMSO treatment were marked decreases in mRNAs for three ubiquitous proteins, i.e., a 70 kDa heat shock protein (less than 6 h), heme oxygenase and nonspecific delta-aminolevulinate synthase (ALAS) (less than 12 h). These changes were followed by sequential increases in mRNAs for enzymes in the heme biosynthetic pathway. Namely, mRNAs for the erythroid-specific ALAS, delta-aminolevulinate dehydratase, porphobilinogen deaminase and uroporphyrinogen decarboxylase started to increase at 12, 18, 18-24 and 24 h, respectively. Nuclear runoff studies revealed that these changes are largely transcriptional. Treatments with other inducers of erythroid differentiation, e.g., hexamethylene bisacetamide, n-butyric acid and N'-methylnicotinamide, also showed similar effects on mRNAs as those following DMSO. These findings suggest that both suppression of ubiquitous genes and activation of heme pathway enzyme genes are associated with erythroid differentiation, and the former occurs preceding changes in the latter.[1]

References

  1. Sequential activation of genes for heme pathway enzymes during erythroid differentiation of mouse Friend virus-transformed erythroleukemia cells. Fujita, H., Yamamoto, M., Yamagami, T., Hayashi, N., Bishop, T.R., De Verneuil, H., Yoshinaga, T., Shibahara, S., Morimoto, R., Sassa, S. Biochim. Biophys. Acta (1991) [Pubmed]
 
WikiGenes - Universities