The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

CagA associates with c-Met, E-cadherin, and p120-catenin in a multiproteic complex that suppresses Helicobacter pylori-induced cell-invasive phenotype.

BACKGROUND: Helicobacter pylori induces an invasive phenotype in gastric epithelial cells through a mechanism that requires the type IV secretion system and the phosphorylation of c-Met. The E-cadherin-catenin complex is a major component of the adherens junctions and functions as an invasion suppressor. We investigated whether E-cadherin has a role in H. pylori-induced, c-Met phosphorylation-dependent cell-invasive phenotype. METHODS: AGS cells that lack E-cadherin and that are invasive to H. pylori stimulation were transduced with E-cadherin and infected with H. pylori. NCI-N87 cells, which endogenously express E-cadherin, were also used for infection experiments. RESULTS: E-cadherin was sufficient to suppress not only H. pylori-mediated cell-invasive phenotype but also c-Met and p120-catenin tyrosine phosphorylation. H. pylori infection led to increased interactions between E-cadherin and p120-catenin, c-Met and E-cadherin, and c-Met and p120-catenin. Using in vitro infection assays, we showed that H. pylori CagA interacts with E-cadherin, p120-catenin, and c-Met. Finally, using small interfering RNA, we showed that interactions between CagA and E-cadherin and between CagA and p120-catenin were established through c-Met. CONCLUSIONS: We suggest that H. pylori alters the E-cadherin-catenin complex, leading to formation of a multiproteic complex composed of CagA, c-Met, E-cadherin, and p120-catenin. This complex abrogates c-Met and p120-catenin tyrosine phosphorylation and suppresses the cell-invasive phenotype induced by H. pylori.[1]

References

  1. CagA associates with c-Met, E-cadherin, and p120-catenin in a multiproteic complex that suppresses Helicobacter pylori-induced cell-invasive phenotype. Oliveira, M.J., Costa, A.M., Costa, A.C., Ferreira, R.M., Sampaio, P., Machado, J.C., Seruca, R., Mareel, M., Figueiredo, C. J. Infect. Dis. (2009) [Pubmed]
 
WikiGenes - Universities