The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Application of polyethyleneimine-modified scaffolds to the regeneration of cartilaginous tissue.

In this study, we analyzed the physicochemical and biophysical properties of three-dimensional scaffolds modified using polyethyleneimine (PEI) and applied these scaffolds to the cultivation of bovine knee chondrocytes (BKCs). PEI was crosslinked in the bulk or on the surface of the ternary scaffolds comprising polyethylene oxide, chitin and chitosan. The results revealed that when the concentration of PEI was less than 300 microg/mL, the cytotoxicity of a scaffold was on the same order in the two method of modification. An increase in the concentration of PEI favored the adhesion of BKCs. When the amount of PEI in scaffolds is fixed, the surface-modified scaffolds exhibited a higher adhesion efficiency of BKCs than the bulk-modified scaffolds. For the regeneration of cartilaginous components, a higher amount of PEI in a scaffold yielded larger amounts of proliferated BKCs, secreted glycosaminoglycans, and produced collagen. In addition, the formation of neocartilage in the surface-modified scaffolds was more effective than that in the bulk-modified scaffolds. These tissue-engineered scaffolds, modified by an appropriate concentration of PEI, can be potentially applied to cartilage repair in clinical trials.[1]

References

 
WikiGenes - Universities